Section 2. Optical Properties
Collision Coefficient
- density per unit volume: $\rho (m^{-3})$
- cross sectional area: $\sigma_{s}, \sigma_{a} (m^2)$
- scattering(absorption) coefficient: $\mu_{s}(\mu_{a})=\sigma_{s}(\sigma_{a}) \cdot \rho (m^{-1})$
- extinction coefficient: $\mu_{t}=\mu_{s}+\mu_{a}$
- single-scattering albedo: $\alpha=\frac{\mu_{s}}{\mu_{t}}$
Phase Function
Examples: Henyey-Greenstein, Rayleigh, Lorenz-Mie.
For more details in Handbook of Digital Image Synthesis: Scientific Foundations of Rendering
Section 3. Volumetric Rendering Equation
Radiative Transfer Equation (RTE)
Then, this differential equation can yield
Here, $y=x-t\cdot\omega$, $T(x,y)=e^{-\int_{x}^{y}\mu_{t}(z)dz}$(Beer Lambert Law)
Volume Rendering Equation
Here,$z=x-dist\cdot \omega$
Path Integral Formulation
$\overline{x_{k}}={x_0,x_1,\dots,x_k}$, the $x_0$ is the point on the sensor
$W$ is response of the point on the sensor
$G(x,y)=\frac{D(x,y)\cdot D(y,x)}{\Vert x-y\Vert ^2}$
$D(x,y)=\begin{cases} \vert n(x)\cdot \omega_{x\rightarrow y}\vert & \text{x is on a surface} \newline 1 & \text{x is in a medium} \end{cases}$
$f_{x\rightarrow y\rightarrow z}=\begin{cases} f_{r}(x\rightarrow y\rightarrow z) & \text{y is on a surface} \newline \mu_{s}(y)\cdot f_{p}(x\rightarrow y\rightarrow z) & \text{y is in a medium} \end{cases}$
$L_{e}(x\rightarrow y)=\begin{cases} L_{e}(x,\omega_{x\rightarrow y}) & \text{x is on a surface} \newline \mu_{a}(x)L_{e}(x,\omega_{x\rightarrow y}) & \text{x is in a medium}\end{cases}$